

Southwell Schools' Shared Calculation Policy

Holy Trinity C of E Infant School, Lowe's Wong Infants School, The Minster School & Lowe's Wong Anglican Methodist Junior School

Reviewed June 2023

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding 1 and a two digit number	Adding three single digits. Use of base 10 to combine two numbers.	Column method- regrouping. Using place value counters (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame		Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. Using place value counters (up to 3 digits).	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different annumbers decimal places.
Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom		Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.		Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Calculation Policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Year	Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6 + 5	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6+\square=11$ $6+5=5+\square$ $6+5=\square+4$
Year	TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$ \begin{array}{c} 41 + 8 \\ & 1 + 8 = 9 \\ 40 + 9 = 49 \end{array} $ $ \begin{array}{c} 4 $
Year	TO+TO using base 10. Continue to develop understanding of partitioning and place value. 36+25	Children to represent the base 10 in a place value chart.	Looking for ways to make 10. $36 + 25 = 30 + 20 = 50$ $5 + 5 = 10$ $50 + 10 + 1 = 61$ 1 5 36 Formal method: $\frac{+25}{61}$

Conceptual variation; different ways to ask children to solve 21 + 34

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s columnwe exchange for 1 ten, when there are 10 tens in the 10s column - we exchange for 1 hundred.

	?
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children.

How many children in total? 21 + 34 = 55.

Prove it

21

<u>+34</u>

21 + 34 =

= 21 + 34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s	
00	0	
000	?	
?	5	

Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

	Concrete	Pictorial	Abstract
Introduced in FS	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). 4 – 3 = 1	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
Year	Counting back (using number lines or number tracks) children start with 6 and count back 2. 6-2=4 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line.

Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Rey	rianguage: double, times, multiplied by, the product of, groups of, lots of, equal groups.					
	Concrete	Pictorial	Abstract			
d in FS	Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12			
Introduced in FS		?				
	Number lines to show repeated groups 3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. 3 × 4 = 12			
Year	Cuisenaire rods can be used too.		0 4 8 12			

	Use arrays to illustrate commutativity counters and other objects can also be used. 2 × 5 = 5 × 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. 10 = 2 × 5	
Year	2 lots of 5 5 lots of 2	000000	$5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5	
	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken.	
<u></u>		10s ls	4 x 15 10 5	
Year	x 10 3	6 11 0	10 x 4 = 40 5 x 4 = 20 40 + 20 = 60	
	10 8 10 100 80 3 30 24		A number line can also be used.	
	Formal column method with place value counters (base 10 can also be used.)	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding.	
Year	3 × 23 10s 1s	10s Is 00 000 00 000	3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ 20 3 60 + 9 = 69	
	6 9	6 1 9	<u>× 3</u> <u>69</u>	

Calculation Policy: Division

Key language: share, group, divide, divided by, half

Rey	key language: share, group, divide, divided by, hall						
	Concrete	Pictorial	Abstract				
Introduced in FS	Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	6 ÷ 2 = 3 Children should also be encouraged to use their 2 times tables facts.				
Year	Grouping using a range of objects.	3 groups of 4	12 ÷ 3 = 4				
Year	Repeated subtraction using Cuisenaire rods above a ruler. 6 ÷ 2 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.				

Long division using place value counters 2544 ÷ 12

Zong artision asing place value coal						
1000s	100s	10s	1s			
0	000	0000	0000			
1000s	100s	10s	1 s			
			0000			

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$\begin{array}{r}
 02 \\
 \hline
 12 2544 \\
 \underline{24} \\
 1
 \end{array}$$

1000s	100s	10s	1s
			0000

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

24

12

24

12

24

24

24

0

Conceptual variation; different ways to ask children to solve 615 ÷ 5								
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank	5 615	What is the cal					
	accounts. How much will be in each account?	615 ÷ 5 = = 615 ÷ 5	100s	10s	1s 00000			
	615 pupils need to be put into 5 groups. How many will be in each group?		100 100	10 10 10 10 10	00000			