

Junior School

Southwell Schools' Shared Calculation Policy

Holy Trinity C of E Infant School, Lowe's Wong Infants School, The Minster School \& Lowe's Wong Anglican Methodist Junior School

Reviewed June 2023

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding 1 and a two digit number	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame		Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. Using place value counters (up to 3 digits).	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different annumbers decimal places.
	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom		Arrays- showing commutative multiplication	Arrays $2 \mathrm{~d} \times 1 \mathrm{~d}$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
$\begin{aligned} & \frac{c}{0} \\ & \frac{0}{n} \\ & \hline 0 \end{aligned}$	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.		Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Calculation Policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete
 Pictorial

Combining two parts to make a whole (aggregation):
useother resourcestooe.g.eggs,shells, teddy bears, cars

n

Counting on using number lines using cubes or Numicon.

Abstract

Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.
$4+3=7$
Four is a part, 3 is a part and the whole is seven

The abstract number line:
What is 2 more than 4 ?
What is the sum of 2 and 4 ?
What is the total of 4 and $2 ? 4+2$

$\stackrel{\text { ¢ }}{\text { ¢ }}$	Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
$\stackrel{\text { ¢ }}{\text { ¢ }}$	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r} 41 \\ +\quad \begin{array}{r} 8 \\ \hline 49 \end{array} \end{array}$
$\stackrel{\text { ® }}{\text { ¢ }}$	TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart.	Looking for ways to make 10.

Conceptual variation; different ways to ask children to solve 21 + 34

Calculation Policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.

$\stackrel{\text { 㐫 }}{\text { ¢ }}$	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
$\stackrel{\text { 㐫 }}{\text { ¢ }}$	Making 10 using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they canmake 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
	Column method using base 10. 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7.

Conceptual variation; different ways to ask children to solve $21+34$

	391	
	186	?

$\begin{array}{l}\text { Raj spent } £ 391 \text {, Timmy spent } \\ \text { £186. How much more did Raj } \\ \text { spend? }\end{array}$	$\square=391-186$	
Calculate the difference between		
391 and 186.	$\underline{-186}$	
	-	

What is 186 less than $391 ?$

Missing digit calculations

Calculation Policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

	Concrete	Pictorial	Abstract
	Repeated grouping/repeated addition $3 \times$ 4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{gathered} 3 \times 4=12 \\ 4+4+4=12 \end{gathered}$
	Number lines to show repeated groups 3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$

$\stackrel{\text { ® }}{\text { ¢ }}$	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
$\stackrel{\text { ¢ }}{\text { ¢ }}$	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used.
$\stackrel{\text { º }}{\substack{\text { ¢ }}}$	Formal column method with place value counters (base 10 can also be used.)$3 \times 23$10s 1s 08 000 00 000 9 9	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. $\begin{array}{cc} 3 \times 23 & \\ & 3 \times 20=60 \\ & 3 \times 3=9 \\ 20 & 3 \end{array} \quad \begin{array}{ll} 30+9=69 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \end{array}$

Calculation Policy: Division

Key language: share, group, divide, divided by, half
Sharing using a range of objects.

$\begin{aligned} & \grave{\pi} \\ & \underset{\sim}{0} \end{aligned}$	2d \div 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of Iollipop sticks to form wholes - squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. Use of Cuisenaire rods and rulers (using repeated subtraction)	Children to represent the Iollipop sticks pictorially. There are 3 whole squares, with 1 left over.	$13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'
$\begin{aligned} & \grave{\pi} \\ & \underset{\sim}{x} \end{aligned}$	2d divided by 1d using base 10 (no remainders) SHARING $48 \div 4=12$ Start with the tens.	Children to represent the base 10 and sharing pictorially.	$48 \div 4$ 4 tens $\div 4=1$ ten 8 ones $\div 4=2$ ones $10+2=12$

Long division using place value counters $2544 \div 12$

1000s	100s	10 s	1s
$\Theta \theta$	$\Theta \Theta \Theta$	0000	$000 \odot$

We can't group 2 thousands into
groups of 12 so will exchange them.

1000s	100s	10s	$1 s$	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.	
		000	-000		122544 24
	0				1

After exchanging the hundred, we $\quad 1 2 \longdiv { 2 5 2 1 }$
have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

$$
\begin{array}{r}
\frac{24}{14} \\
\frac{12}{2}
\end{array}
$$

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remainder

$$
\begin{array}{r}
\begin{array}{r}
0212 \\
1 2 \longdiv { 2 5 4 4 } \\
\text { er. } \frac{24}{14} \\
\hline 12 \\
\hline 24 \\
\hline 24 \\
\hline 0
\end{array}
\end{array}
$$

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?	$515 \div 5=$
615 pupils need to be put into 5 groups. How many will be in each group?	$=615 \div 5$

What is the calculation?
What is the answer?

